Fructose Promotes Uptake and Activity of Oligonucleotides With Different Chemistries in a Context-dependent Manner in mdx Mice
نویسندگان
چکیده
Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise in correcting frame-disrupting mutations in the DMD gene for Duchenne muscular dystrophy. However, insufficient systemic delivery limits clinical adoption. Previously, we showed that a glucose/fructose mixture augmented AO delivery to muscle in mdx mice. Here, we evaluated if fructose alone could enhance the activities of AOs with different chemistries in mdx mice. The results demonstrated that fructose improved the potency of AOs tested with the greatest effect on phosphorodiamidate morpholino oligomer (PMO), resulted in a 4.25-fold increase in the number of dystrophin-positive fibres, compared to PMO in saline in mdx mice. Systemic injection of lissamine-labeled PMO with fructose at 25 mg/kg led to increased uptake and elevated dystrophin expression in peripheral muscles, compared to PMO in saline, suggesting that fructose potentiates PMO by enhancing uptake. Repeated intravenous administration of PMO in fructose at 50 mg/kg/week for 3 weeks and 50 mg/kg/month for 5 months restored up to 20% of wild-type dystrophin levels in skeletal muscles with improved functions without detectable toxicity, compared to untreated mdx controls. Collectively, we show that fructose can potentiate AOs of different chemistries in vivo although the effect diminished over repeated administration.
منابع مشابه
Effective Exon Skipping and Dystrophin Restoration by 2′-O-Methoxyethyl Antisense Oligonucleotide in Dystrophin-Deficient Mice
Antisense oligonucleotide (AO)-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD) and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE) on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted...
متن کاملWild-Type Mouse Models to Screen Antisense Oligonucleotides for Exon-Skipping Efficacy in Duchenne Muscular Dystrophy
A readily available animal model is essential for rapidly identifying effective treatments for Duchenne muscular dystrophy (DMD), a devastating neuromuscular disorder caused by the lack of dystrophin protein, which results from frame-disrupting mutations in the DMD gene. Currently, the mdx mouse is the most commonly used model for antisense oligonucleotide (AO)-mediated exon skipping pre-clinic...
متن کاملHexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice
Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose-fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin level...
متن کاملRhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model
Objective(s): In Cuba the endemic scorpion species Rhopalurus junceus has been used in traditional medicine for cancer treatment and related diseases. However there is no scientific evidence about its therapeutic potential for cancer treatment. The aim of the study was to determine the antitumor effect of scorpion venom against a murine mammary adenocarcinoma F3II. <br...
متن کاملDexamethasone Promotes the Risk of Cardiovascular Disease in High Fructose-exposed Wistar Rats
Background: Dyslipidemia constitutes a serious public health concern globally. It has been established that excessive fructose intake results in dyslipidemia; however, whether dexamethasone aggravates or alleviates fructose-induced dyslipidemia is unknown. Thus, we examined the effects of dexamethasone on dyslipidemia and hyperuricemia in high fructose-taking Wister rats. Methods: Twenty male...
متن کامل